Regional estimation of flood quantiles: Parametric versus nonparametric regression models
نویسندگان
چکیده
منابع مشابه
Nonparametric estimation of conditional quantiles using quantile regression trees
A nonparametric regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning of the covariate space is investigated. Unlike least squares regression trees, which concentrate on modeling the relationship between the response and the covariates at the center of the response distribution, our quantile...
متن کامل@bullet Regression Quantiles in Nonparahetric Regression @bullet Regression Quantiles in Nonparametric Regression
In a nonparametric setup involving stochastic regressors. regression quantiles relate to the so called conditional quantile functions. Various asymptotic properties of such conditional quantile processes are studied with due emphasis on the underlying design aspects.
متن کاملNonparametric Estimation of Extreme Conditional Quantiles
The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on i.i.d. samples. On the other hand, quantile regression based procedures work well for estimation within the data range i.e. the estimation of nonextreme quantiles but break down when main interest is i...
متن کاملNoninformative Nonparametric Bayesian Estimation of Quantiles
In 1981 Rubin introduced the Bayesian bootstrap and argued that it was the natural Bayesian analogue to the usual bootstrap. We show here that when estimating a population quantile in a nonparametric problem it yields estimators that are often preferred to the natural naive estimators based on the order statistic. AMS 1980 Subject Classification: 62G05, 62C15 and 62G30
متن کاملFunctional nonparametric estimation of conditional extreme quantiles
− We address the estimation of quantiles from heavy-tailed distributions when functional covariate information is available and in the case where the order of the quantile converges to one as the sample size increases. Such ”extreme” quantiles can be located in the range of the data or near and even beyond the boundary of the sample, depending on the convergence rate of their order to one. Nonp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Research
سال: 2002
ISSN: 0043-1397
DOI: 10.1029/2001wr000677